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the stochastic linear regulator problem, through an additive
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Abstract. This paper is concerned with the approximate solution

of stochastic optimal control problems which arise by perturbing

term with a small parameter &§ in the drift coefficient of the
unperturbed dynamical equations. The system states are assumed
completely observable. Our main results concern expansions of

solutions of the perturbed equation in powers 6,62,63,... of

the small parameter §.
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1. Introduction. The problem of optimal control of Markov

diffusion processes has been the subject of a great deal of
research over the past several years. See for instance [FR1],
[Bl]. However, it is a difficult matter to calculate optimal
feedback control laws, except for the linear regulator problem
and a few other special cases. In this paper, we consider a
nonlinear perturbation of the stochastic linear regulator, which
takes the form of a small quantity times a certain function, and
develop a technique for computing approximately the optimal feed-
back control. The system states are assumed completely observable.
Our main results concern expansions of solution of the perturbed
problem in powers 6,62,63,... and the validity of these expansions.
Part of this problem has been considered by Kolmanovskii but
under strongest conditions than we consider here. See ([Kol]
Consider a stochastic system whose state gd(t) is an n

dimensional vector, which satisfies a stochastic differential equation
acbw) = aweb) + Gg(EG(t)) + B(t)u(t))dt + o(t)dw(t) (1.1%
with initial data
Ea(s) = X, (1.26)
Here W is a brownian motion process of some dimension d. The
system state £(t) is assumed known to the controller. The

control u(t) at time t is a vector, of some dimension k, chosen

using a feedback control law Y:
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u(t) = Y(t,E(t)). o113

The problem is to find among all Y ¢ ‘24Rt), to be defined
L in §2, one for which the following quadratic criterion of expected

system performance is minimum.

SR i 5 8
eXiu) = ES,X L(t,g (t),u(t))dt (1.4")
S

where T denotes the terminal time and L(t,x,u) = x'M(t)x + u'N(t)u.

4 For convenience, we use the notations

£97% e x) = Aft)x + 8g(x) + Bu-

When 6 = 0, this is the well known linear reqgulator problem, for
which the optimal feedback control is a linear function of state.
See [FRl, Section 6.5].

(o}

1°* (s,x) = -N"1(8)B" (s)K(8)x. (1.5)

Here K(s) is a symmetric, non-negative definite matrix of size

n x n and bounded on any finite time interval.

Let ¢6(s,x) denote the minimum cost function and consider

it as a function of the initial data

¢6(8.x) = inf k Js(s,x:Y). (1.66)
Ye YR

We like to show under certain conditions that ¢6 satisfies the
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partial differential equation for all (s,x) e [0,T] x R"

¢g + % tr{oo'¢ix} + Hd(s,x,¢i) =0 : (1.76)

together with the data

6% (T,%) = 0 (1.8%)
where tr is the trace of a square matrix, i.e.,

2.6
s "¢
tr{oo'¢_ } = J (00"),; s=mm— ,
XX i,3=1 ij axiaxj
by denotes the gradient of ¢ in the variables x = (xl,...,xn)',

regarded as a row vector and

#%(s,x,P) = min ([Lis,xu) + Po£879(s,x)] (1.9%)
uek=R

*
and the optimal feedback control Y6 satisfies

y'N(s)y + ¢i(s,x)-B(s)y = min on Rk : (1.10)

§

*
when y = Y (s,x). Thus, the completely observable optimal problem

is in principle reduced to solving the Cauchy problem (1.76) - (1.86)

for ¢6 and then minimizing the left-hand side of (1.10) over Rk

for each (s,x) € [0,T] x R'". This is usually difficult to do in
practice. But for § = 0, it is well-known that the solution is

(see [FR1l], Section 5)
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¢°(s,x) = x'K(s)x + q(s), 0 <s < g

T
where q(s) = I tr{oo'K}dt and the corresponding solution of (1.10)

S o* S
is jJust Y  (s,x) as in (1.5).
We wish to find ¢,¢i (and hence also YG*) approximately

in terms of quantities computable from ¢°,¢:. We seek that the

following type of expansions hold uniformly for (s,x) is any

compact set:

e 80, + azei + ... + 5kek + o5y, AN
8 - -0 i k k
A 601 + 8705, + oo + 870, +0(87). (1.12)

The coefficients in (1.11) must have the property that klek is
the kth derivative of ¢6 with respect to 6§ when § = 0. Hence
they satisfy the equations found by formally differentiating (1.76)

repeatedly with respect to 6 and setting § = (. These equations
)

involve the partial derivatives of H and ¢° of corresponding

orders. Whether such expansions are available will depend on
smoothness properties of H6 which will be guaranteed by the ?
assumptions in §2. Suppose we use the optimal unperturbed policy

% _
° in the perturbed problem. We like to know how close to the |

Y
*

optimum is the performance JG(s,x;Yo ) in perturbed problems.

Our method will also answer this equation. |

The following notations are used

CQ(F) — If T is an open set, we write g ¢ c“(r) to mean that |
the function g together with its partial derivatives of orders

j=1,...,2 are continuous on I'. If T is not open, then
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g e Cz(r) means that g agrees on I with a function h ¢ CE(F')

where T' is openand T CTI°'.

C1'2(Q) — It has the same meaning as above except g is twice

continuously differential with respect to X and continuously

differentiable with respect to t.

CP(Q) — It denotes the class of all continuous functions ¢ which
satisfy a polynomial growth condition on Q, i.e., for some

positive constants c,m, |¢(t,x)]| < c(l+|x|m) when (t,x) e Q.

Céz)(Q) — It means the class of functions which together with its

derivatives up to order % satisfy polynomial growth condition

on Q.

s

We begin in section 2 by discussing assumptions on f,L, %(k)

and then get some preliminary results about the existence,

o e K, o P

uniqueness, boundedness of the moments of EG and some properties
of HG. In section 3, the existenee and uniqueness of solutions 3
of dynamic programming equations are proved. Then we use a

verification theorem to show that the solution is ¢6. In

section 4, we give the approximation method and prove it is valid

and finally we discuss the goodness of Yo* in the perturbed

problem.

2. Assumptions and Preliminary Results. The following assumptions

are made.




(AI) A(t),B(t),M(t) and N(t) are bounded C”° matrix-

il valued functions with size n xn, nx k, n xn, k x k

respectively. M(t) is a semi-positive and N(t) is positive f

- definite.

(AII) g ¢ Cél)(Rn) and gx(x) is a matrix-valued function

with diagonal elements bounded above and off-diagonal elements

? bounded. i

! (AIII) There exist positive constants Ml'MZ'M3' constants :

ayra, independent of 6§, and a positive c” function V(x) such

that
(a) -;'— tr{o(t)o’ (t)Vxx(x)} + Vx(x) *(A(t)x + 6g(x)) < M1(1+V(x)) ,
b | (b)  (A+]x]) |V (x)] < M (1+V(x)) i

(c) Vx) » = as |x| » =

2 2
@ o + M2|x| S V() <a, + M3|x|

2

(AIV) There exist positive constants €, such that

(@ Jolt,x)| < c; (1+]x])

and for all v ¢ rR"?

n
(b) i'§=l(c(t)o (£)) 559395 2 c2|v| i ,

This means that noise enters directly into each component of the
> system. The corresponding dynamic programming equation is
? uniformly parabolic. This enables us to apply result about para-

bolic partial differential equation.




Under the assumptions of (AIII) and (AV). We have the

existence and uniqueness of solution n(t) of free-control system,
i.e., let u=0 in (1.16). Moreover, for any positive integer m,
there exists a positive constant Cm depending on t,Ml,Mz,M3

such that, see [F3}, [Kl], [K2]

Es’xln(t)lm < Cm(1+|x|m) (2. 1)

If K is compact subset of Rk, then H® is clearly well-defined

by (1.96). Let u = V(s,x,p) be the unique vector in K at which

HG is a minimum on K for every (s,x,p) belonging to an open

set r of R2n+l. Then if T is a set such that V ¢ Cz(r), we

§ 2+1 o = s _
have H ¢ C (I'). Moreover, Hs = LS + PfS = Hx = Lx + Pfx, Hp =" f
see [Fl]. When k = Rk, we can see easily that H is a ¢~

function and

1

V(s,x,P) = - %N' B'P', (2.2)

Let K be a closed convex subset of Rk containing 0 as

an interior point. Let

Q= [0,T] x R"

Q. = [0y7] * (|=] < £}, ¢ = 1,2,:..

we define by %(K) the set of all function 'Y such that

ARG, $R7 iy PRI, A R RN, v A O Aoy




(@) ¥(s,x) e K for all (s,x) € Q
(b) When (s.x),(s,y) e Q. with 0 < s < T'<T

|Y(s,x) = Y(s,y)]| < arlx—yl (2.3)
(c] For all (s,x) e Q, [Y(s,x)| < B(1+|x])

The positive consants a., B may be different for different

functions Y. o, may also depend on T'.

Lemma 2.1. Conditions (2.3) insure the existence and uniqueness
of the process Ea(t) in 0“16), given the control Y and the

initial data (1.29),

Proof. Using the same V as in (AIII), we have

7 tr{o(®) o' (1)V, ()} + V (x)- (Alt)x + 6g(x) + B(E)Y(t,x))

A

M, Q+V(x)) + B(1+|x]) [vx(x) |

IA

M1(1+8)(1+V).

Hence the solution 56 of (1.16) with (1.26) exists. Uniqueness

lcomes from (2.3b). Q.E.D.

Furthermore, there exists a positive constant Cé such that

$ m m
E Max |E° ()] < C'(1+|x|). (2.4)
S,X Sf_tf_l - m

The next lemma is an estimate on Esxlgd(t)
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Lemma 2.2, Es'xlgd(t)| < C;(1+|x|) where C) is a positive

constant independent of K.

Proof: Since 0 e K, by (1.66) we have

£
¢6(s,x) < ES % I n'(t)M(t)n(t)dt
: s

where n(t) is the solution of free control system. Because M(t)

is bounded. There exists a constant Bl > 0 such that

¢6(s x) < B,E Tl (t)lzdt
% - "178,x < 1 £
By (2.1) we have
0% (six) < B, (+|x|?)

for a positive constant Bz. From (1.65) and positive definite

of N(t) we have
T B
§* 2 2 2
Es,x Jslu (E) | at < 5 (1+]x]| %) (2.5)
where the positive constant y satisfies

WIN(E N > ylu]?

for all u ¢ Rk.

Now subtract the equation governing free control system from

*
(1.16) with u = u6 . Using the mean value theorem, we obtain

4
’

- wT—— —-—

o
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o* 1 o* 5% 5%
A" -n) k) = A) + 3 J g, (MAE" =n))dr) (€7 -n) (t)dt + B(t)u® (t)dt
0

* *
WIEH BT cnhe) = 0 where BN i b soiarian ne (1.1 with

*
u = u6 « Fet

gx(X) = Gl(x) + Gz(x)

where Gl(x) is a diagonal matrix-valued function whose diagonal
elements are those of gx(x) and Gz(x) is the same as g
except diagonal elements are all zero. Let

1

A, (t) = A(t) + 9§ f Gz(n+l(€6*-n))dx.

0
By assumptions, Al(t) is still a bounded matrix-valued function.
Let Xz(t,v) be the principal matrix solution of the following
equation at initial time v,

1

ax, (£,v) = 6 I Gl(n+A(€6*-n))dAXl(t,v)dt.

0
Since the elements of G1 are bounded above, xl(t,u) is bounded
for s < v < t. Using the variation of constants formula, we get

T

§* §* §*
(E" -n)l(t) = I Xl(t,v)[Al(v)(£ -n) (v) + B(v)u (v)]dv.

s

Then

D AT TNV Tt e w1 TS T et
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§* 2 i 5 ?
[£7 (€)= ned|” < 2[[ X (£,VIA; (v) % (v) = n(v))av
s
T 5 2
+ 2,[ xl(t,v)B(v)u (v)dv, .
s
Taking expectation ES & and by (2.5), Cauchy-Schwartz and
14
Gronwall's inequalities, we have
§* 2 2
Es,xls (e} = mtel|® < 8, Q+|x]|%)
where 63 is a positive constant. Hence
s* 2 §* 2 2
Eg |8 (€17 < 2 B, <157 (8] = ne)| %2 Eg xIn(®)]
< 84(l+IXI2)
*
where B, is a positive constant. Since (Eg x|£6 (t:)Ip)l/p is
’
nondecreasing as p increases, we obtain
6* "
Eg xl& (8)] < cr+|x])
where C& is positive constant not depending on K. Q.E.D.

Let X2(t,v) be the principal matrix solution at initial

time v of

dx, (t,v) = § Gl(ga*(t))xz(t,v)dt.

By assumption on Gl'xl(t'v) is bounded for s S vt Let W
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be the solution of

aw(e) = @) + 6 g (2" e)))weerat

with W(s) = identity matrix. Again, using the similar technique
as before, we can show that W(t) is bounded and the bound does
not depend on x.

This next lemma, a modification of Lemma V.5.2 of [FR1],

is concerned with the probabilistic representation for solution

v (s,x) of a linear partial differential equation
1 . i
by * 5 tr{oo wxx} + Y -f + g(s,x)yp + h(s,x) = 0.
Lemma 2.3. Let ¢ be a solution of the above equation in

[0,T] x R® with ¥v(r,x) = ¥(x), suppose that ¢,h,¥ belong to

C;’z(Q) and g is bounded and continuous on Q, then -

T i

v(s,x) = Es'x I D(u}h(u,& (u)du + ES'xD(T)‘P(E(T))

s
where

u

D(u) = exp J g(v,g(v))dv
S

Proof. Consider D in the proof of cited lemma. Q.E.D.

3. Dynamic Programming Equation. Let 56

non-negative real valued function ¢ on Q such that

denote the set of all
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i’j = l'o-o'n

(1) the partial derivatives ws'wx ]
i g

C b

are continuous on Q and satisfy a HS8lder condition on each

i date sk tins

compact subset of Q.

F ; (i) vy € Cp(Q)

(iii) vy(T,x) = 0 for all x.

We seek a solution in 56 of

by + % trioo'y, } + Hé(s,x,wx) = (3.1)

with the Cauchy data ¢ (T,x) = 0. If ¢5 is such a solution, let

E i *
E | Y6 be defined by (1.10). Since the first term on the left-hand

side of (1.10) is quaratic in y and the second term is linear in

* *
{ Y, (1.10) uniquely determines YG. The function Y(S clearly
! satisfies (2.3a). By a similar proof as for (F.2 Theorem 2.2) it i

4 satisfies (2.3b), we shall prove later that (2.3c) holds.

The following theorem is quoted from [FR1]. It tells us

that the existence of each ¢5 and Yo' imply a solution to the
minimum problem. Let TI be an open subset of Q and 3*I be a closed
subset of the boundary of I such that (T,EG(T) e 9*T with

ﬁ ‘ probability 1, for every choice of initial data (s,x) € T and every

admissible control, where 1 is the first exit time. Let

T
J(s,x;Y) = Es'x I L(t.EG(t).u(t))dt.

[Verification Theorem]: Let ¢(s,x) be a solution of (3.1) with




et
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the boundary data y(s,x) = 0 for (s,x) ¢ 3T such that V¥

is in C;'z(r) and continuous on the closure T, then

(a) v(s,x) < J(s,x;Y) for any admissible feedback control

Y and any initial data (s,x) e TI.

(b) If Y* is an admissible feedback control such that

(1.10) is satisfied when Y = Y*(s,x), then V¥ (s,x) = J(s,x;Y%).

This Y* is optimal among all admissible feedback control laws,

for all choices of initial data (s,x) ¢ T.

Let us now show that there is a unigge solution in 5% of

(3.1). This will be done by approximation in two stages. In the
first step we assume K is a compact set containing zero as an
interior point. Let T, denote the first time t < T when
|éé(t)| =r, if lgd(t)l < r for s <t < T wesget 1 =T,

x
where gd(s) =x and |x| < r. Let

8 o 8
Jp(s,%:¥) = E_ Is L(t,£°(t),u(t))at BT

As r +> o, Ts increase to T. Since L is non-negative, the

monotone convergence theorem implies that Jr(s,x;Y) tends to

Jd(s,x;Y). For: B = L,270ves 16t

¢g(S'X) = min J_(s,x:Y),

Ye (k)

then 0 < ¢g < ¢g £ «+sy since 0 e K, we have ¢g < Jg(s,x;O).

From (2.1) and Jg(s,x;O) < J(s,x:0) we have

L A i e W S e S T Tl

S

e sk S il J G RN
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3
4
8 2

Bl o (8,%) < v, (1+]x]|7) {3.3)

for some positive constants Vy* Let

TR

¢6(s,x) = lim ¢g(s,x) (3.4)

X

= Clearly, ¢6 satisfies (3.3) too. By Theorem VI 6.1 of FFR1] and

(e

the verification theorem, for each r,¢g is a solution of (3.1)

b i ¢

|
1
i with the boundary data ¢g =0 on
{

L. = (o,7] x {|x] = r}) UUT} x {|x] < r}).

In order to show that ¢6 also belongs to %., we need to

! 0
establish a uniform bound on any compact set for the gradients
¥ $
i (¢r)x'

- Lemma 3.1. Let B be a compact subset of Qr , then (¢g)x is

; 0
- bounded on B wuniformly with respect to r > Iy

Proof. With ¢ = ¢§ in Lemma 5.3, p. 494 of [Fl], we have

T
r

$ &
(¢r)x(s,x) = EB'x Js LXWdt +

) )
+ Es,x(¢r)x(rr,£ (Tr))W(rr) (3.5)

where 1. is the exit time from Q. with Y = Y*, the optimal
control law corresponding to ¢$. Since (¢g) (T; EG(T)) = 0,
X

|Lx| < alL + o, for suitable 0y 00, and W is bounded, we have

sl dedadkiin o

kil

#
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8 5 8
| (0) (six)| < aj0 (5,%) + a,(T-s) + IzT:r|(¢r)x|P{rr G
Let Nr be a number such that
§
0, (s,x) < N_(r-[x])
whenever |x| < r. Then
| 0D, (sox) | < ai08(s,x) +a,(-s) + N PLx_ < T). (3.6)

In order to show that NrPr{Tr < T} is uniformly bounded with
respect to r > Ly We have to estimate N_. Given x take x°

o

with [|x°| = r, |x-x°| = r - |x|. Let v =- %, we construct
T

a barrier 6 at (s,xo) as follows

2y ~k_v+ (x-x°)
0(s,x) = eT S(l-e & )

where kr is the positive root of

2 2
crk - Mrk -1=0

where M. is a bound of |At + 8g(x) + BY*| whenever |[x| < r
and ¢, is defined in (AIV). By straightforward calculation, we

have

1 ' : s -
0y + 7 tr{oo'e, } + b, (Ax + 8g + BY ) < -1

- 5 e - ” 3
Glad S g o2 e i g PR
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k|

§.g; and 6 > 0 on Q. By maximum principle,

P

E

‘_ { *

F 08 (s,x) < (Max LY¥")e.

b x Q

b x

ij Moreover, since 6(s,x°) = 0 and r - x| = lx-x°|,

iii. 8 (s,x) < (Max |9x|)(r-lxl) :
| |
j} ¥

;i 8 (s,x) < eTkr(r-le). 1

Since K is compact, K. % Dl(1+r)2 for some positive constant D

P and LY

1 ]
< Dz(1+r)2, therefore “

§ 2+ 3
¢r(S.X) < D3(1+r)

for some D3 > 0. We take Nr = D3(1+r)2+2. Finally,

8 A
Pl <7} <'e 'F Max |£° (t)]”.
< 3 it

By (2.4), we have

P{rr < T}

IA

r-ACK(1+|x|A),

| where CJ} does not depend on r. If we take X > 2 + % and

recall (3.3), this proves the lemma.

Standard estimates for second order parabolic equations (see
. [Frl], P. 60, 65, 191) and passages to the limit then imply the

desired properties of ¢6. The technical details of the argument




TR T

are similar to the proof of Theorem VI.6.2, of [FR1l].

We have shown that ¢6 € 5% and Y* € (k). Hence by the
verification theorem, ¢6(s,x) is the minimum values of JG(s,x;Y).
The following lemma is a probabilistic representation of ¢i.

Lemma 3.2, ¢£(s,x) R J Lxﬂhia*(t),u*(t))W(t)dt, where W(t)

is defined in Section 2.

o é
Proof. By (3.6), NrRr(rr <T) 0 are r » » and ¢r = lim ¢r

oo

xl

we have
§ [
lo ] < ag0” + o, (T-S) .
Thus, using the boundedness of W, we obtain
E_ ¢S5, e T W) | < const. (1+r) % (1_ < T)
S,x' "X 2 - 5 r '
Hence
E |¢6(Tr EG(Tr))W(tr)I +0 as r +»
8,x""x 4 :

By Lemma 5.3 of [F1] on ¢6 and " >+ T as r -+ o, we have

§ X §* *
¢x(s,x) = Es’x J Lx(t,E (t),u (t))w(t)dt. Q.E.D.

From Lemma 3.2 and Lemma 2.2, there exists a positive

constant v independent of K such that




19

l02ts,x1 | < varixh. (3.7)

Rk, For m=1,2,..., let

Let us now consider the case K

K" = {|¥| < m}.

IA

Sm dm

in (3.1) and solution ¢ found

by the previous method. Then ¢61 > ¢62 > «ee > 0. Let

Consider the corresponding H

¢ = lim ¢6m.

m-+c

By (3.3) and (3.7), ¢6m and ¢im are uniformly bounded on each compact

dm §

set. Since H tends to H as m » «, the same reasoning

indicated right after the proof of Lemma 3.1 shows that ¢6 € _9%

and satisfies (3.1). It remains to show the corresponding optimal
* f
control policy Y6 satisfies (2.3c) and hence belongs to .@%Rk). f

*
Let Y" = Ydm be the optimal control function corresponding to

¥ ]
¢6m. Then Ym tends to Y(S as m + o, We want to estimate ?

IYmI. Given (s,x), let M(y) = y'Ny + ¢i'By. Then M is

minimum of K" for Y = Y' = Ym(s,x). Since 0 is an interior

point of K, we have

. SRS - m
M (Y") X" = 5= M(zY") |, < 0.

Therefore, |

2™ N () Y™ + ¢i-aym < 0.
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ke

Since B(t) is bounded, we have for some positive constants v

Y™

A

§
v, |00
By (3.5) then

X"

A

v3(1+|x|)

m

where v, does not depend on K . Therefore

Theorem 3.1l. The function ¢6(s,x) defined by (1.66) belongs to

*
5% and satisfies (3.1). The function Y6 (s,x) defined by (1.10)
k §*x :
belongs to % (R). Thus Y is optimal.
Actually ¢6 is as smooth as we want (Cm), since H5 is

c” and also the Cauchy data, See [Frl].

4. Asymptotic Formulas for ¢6,¢i

We are now ready to consider the expansions of solution of
the perturbed prcilem in terms of the solution of unpertuzbed
problem. At the end of this section we also indicate how the
methods tell the goodness of the policy Y"  in the perturbed

probleamn. Sinc

*
then ¢6,¢°,Y5 and Y% are ¢” Functions too.

0

A(t),B(t),M(t) and N(t) arc C° functions,

*

Lemma 4.1, ¢6(s,x) > ¢°(s,x).

* *
Precof. Let Y6 ,Y°

be the contrels corxrecsponding tc ¢ ,¢

: §* _o*
respectively and £ L€

be the correspending Markov processes
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respectively (given the same initial data (s,x)). Let &£,z

be the solutions of

(A(L)E(t) + 6g(E(t)) + B(t)Y?" (£,£°% (£)))dt + o(t)dw(t)
[}

dg (t)

dz (t)

A zt) + By (¢,e8 (£)))at + o(t)aw(e)

with initial data £(s) = ¢(s) = x. Suppose X(t,v) 1is the
dx

principal matrix solution at initial time v of 3c - A(t)X, then
we have 4
t |
§ - &* : E
3 i RD X(t,v)g(&™ (v))cv |
s |
i
& i *
then it is easy to sce 56 ». L dn probability as 6 =+ 0. y
5 . |
Similarly we have § - ﬁo in probability as & -+ C. By

definition of ¢7,¢" we have

8 % X *
$°(s,x) = J (s,x; ¥ 5 Jé(s,x; T iy .
O (o) * £
¢~ (s,x) = 37 (s,x; ¥°) < 3%s,x; Y°*). |

These imply

$ * 4 % g
Jd (s,x; Y(S ) - Jo(s,x; Y6 ) ¢5 - ¢° < Jﬁ(s,x; Yox)

1A

+O o*
w J sy Y i

ierl

- = . L
& T R W 0 S e RN e Tve L —
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T
Bore | 165 M1 (0) - o umierceriae < of - ¢°

S

q‘
- A J £ (OMBER) - 8% (eym(n) £ (1) )ac.
. |
'
Since Es,x(gd* MEG* - c'M;)z and ES’X(E'ME - go*'Mg°*)2 are

bounded and the bounds do not depend on §, we use Lebesgue

dominated convergence theorem to get the result. Q.E.D.

Lemma 4.2, ¢i(s,x) s ¢§(s,x) uniformly on any compact set.

Proof. Since in (3.7) v is independent of §, (3.7) implies

that ¢i is uniformly bounded on any compact set. By

Theorem 3.1, ¢5 € .96. Moreover, we know ¢6 e C_. Hence ¢i

is equicontinuous on any compact
6n
exlsts a subsequence ¢x which converges unifoxmly to a

@

eE. By hecolits theovrom, Lhore

limit ¢g. Let us show that ¢ = ¢§ TE el

Nis X,
i
6 l
n
f ¢ dxi > I cidx.
i :
X X
oi ol
and using Lemma 4.1
X
i
6n 6n 6n o o
[ @ X-dhl S, (Sl\i) = ¢ (S'}:Oi) gl (Slxi) . (S'XOJ'.).
i
X .
Ol
5 5 . - (@)
Then using fundamental of calculus, we have ¢ = ¢ and

P
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§* - ok

Lewma 4.3. K > ¢ &

in probability ag & - 0.
Proof. TIrom (1.16), (1.1°%) we have

3 x : rg 3 3 * L +
deY e e e s e e T

el

o* §* o*

# 87 16,2 e 2 e

ot 6* A'k
With & (s} =& (s5) =0. By (1.5)

'y * 3 Jais y
% 0, 6% - ¥ e % = o hsre R P () - £ ).

[ Let. X(t,u) be the principal matrix solution ct injitial time ¥

of

dX = (A(t) - N—l(t)B' (YR} X de.

Then

£
* §* §* 6%
g - & = J XEEv) (0g(s " i) & BlXY" (ve€" Rv))

S

* 3%
| - Y% (v,£% 1) ))av. ;
| |

] * S* * * §* i
since E_ l9® ], B, 1Y, 6% ) - ¥ (v, e o) |? are ;
bounded independent of § and YG*(V,EG*(V)) approaches i

o* §* :
Y (v, (v)) almost surely, ;

§* o* : %

Rjg > = LV k> D bb 6+ O

: Thus i
s

£

;

k- T ol v =z . — e
i Sl e b i L i BOREL L T e —
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* *
&6 o CO in probability as & + 0. O In

We now consider formula (1.11) with k = 1

§ o)

henma 4.4.° ¢° = ¢ =+ 601 + 0 (48) where 6_lo§6) T e e R )
uniformly on any compact sei and 0l satisfies

' %
1 o) YO
0 =L 1 - [
( et 5 tr{do (Ol)xx} * (8] E

with the initial data Ol(T,x) = 0.

Proof, We can show Ol(s,x) has following form

'II
’e *
TPl f b, %)) g (107 (1)) de.
s
For g > 40, let
09 = 671 (95-4°)
§ o $ kA
BY (A7) and QA7 ), 0l satisfies
£ ’ ')-___
$ o T BT O o 7 - E e §
(01)S b5 tr{oo Wyl b (01)x .7 tdsrg ety - (4.37)
Let ca be the solution of
y6*4y0
8, R
dCG(ﬁ{ = £ (t,cs)dt + o(t)dw
*
with initial data z%(s) = x. Since 7 0% 4+ v°% ¢ 9, the |
solution cd exists which is unique in the usual sense and all of f
its moments are bounded. Similar to the proof of Lemma 4.3, we can

A R e, | ™

- E) AT TTPRINID . e s TR AR 0o Ry A T 4 5, P TSR o

Sl il
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*
show that CG > Eo in probability as 6§ » 0., Also by Lemma 2.3,

T

o) (s,%) = B, Js¢§(t,c6(t>)-g(c5(t))dt

where ¢X°g satisfies polynomial growth condition, i.e.,

ES x|¢§(t,c6(t))'g(ca(t))|2 is bounded independent of 6. Hence
’

T :
iim B I ¢f(t,c5(t))'g(c6(t))dt
g T
T
Bk f b (£,5°%(6)) +g (5% (t) ) d.
S

$ : :
Thus 91 > Ol as § » 0. The convergence is uniformly on any

compact sct. llence the lemma is proved. QBRI G
Now we consider formula (1.12) with k = 1,

+8(0)) + 0(8) where 6§ lo(8) » 0 as

§ » 0 wuniformly on any compact sct.

$

Proof. It is equivalent to show (01)x -+ (Ol)x as 6 =+ 0.
Using (4.3%), (oi)x. satisiios
-
) 1 tpnd
(014 g * 3 trioo O dux *
£ i s
(4.57)
&% o*
$ £0:Y § 6, Lol B
LR AR BT Wl e

1x.
i X
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0. Let W6 be the principal matrix solution

: §
with lei(r,x)

at initial time s of

*
aw® = £8¢Y (¢, £8% (¢))wlat.
§,y°* -1 : b :
In fact, fx’ = A + ng = BN "B'K. Using the similar technique
of proof boundedness of W we can show that W6 is bounded and
the bound does not depend on x. Similar as in Lemma 3.2 we can show
fT
G o 20 : 8
(Ol)x(-.)l‘-) = E ,% J (q’>x-g)xw ! dt. (4.67)
s (£, £5%t))

Since moments of Edﬁt) are bounded and (¢S-g)ywd € Cp, then
s T
1 S .y = ‘,O. 70
5limo(ol)x(J'A) Es,x f (gx g)xw 3 dt (4.7)
s Eal? L)

where W® is the principal matrix solution at initial time s
of
aw® = (A - BN 1p'k)1Ca¢.
It is casy to sce the right hand side of (4.7) iz just
(Ol)x(s,x). Indeced, from (4.30) we have
o% o*

3. i B -y Al oY
(lei)s + 5 tr{oo (lei)xx} + (olxi)x £ F (Ol)x f
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By a similar procedure

T
= F B, a0
(O)) (sex) = B, j (9,°9) W l : dt.

s : :
Hence (01)x + (01)x as 6 » 0 uniformly on any compact

sct. Q.E.D.

Lemma 4.6. ¢6 = ¢° + 601 + 8202 . ¢ 0(62) where 6-20(62) + 0

as § » 0 uniformly on any compact sct and 02 is defined by

S
0,¥" i 1 0

1.4
(0,0, + 5 tr{oo' (0 3 leppolx

5 Y+ (0

e
x

2)xx 2)

(4.8°)

with initial data OZ(T,x) = 0.

Proof. Let

# e

P % e
02 = § (0l Ol) 6 (¢ -¢ 601).
a : § =0y
Then the problem is equivalent to 02 > 62 a8 S ¥l By .37,
(4.3%, 65 satisfics
¥ g
8, 5
Nty trloot (0 y+ S g T
(9215 * 5 txiou’(0s) 0 2’ 8
(4.87)
1 0 (46 A,
+ 5 (Ol)x}lpp(el)x + (91)x g 0.
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Using Lemma 2,3,

—

odts i =2, [ oy enbrennd o (e cf o)

PP 1x 5
: (4.97)

+ 0, (6,650 g2 (1)))ae.

. * - . .
Since c6 > g° in probability as 6 =+ 0 and.by (4.60), (4.66)

—_—
AR i 8 e : e
we can secc that both (Ol)x and (ol)x belong to Cp, S e Fagf
the integrand of (4.96) also beongs to Cp, hence 3
T r’ o
i 6 o R X : o* o ok
Glimooz(u,k) = Es,x j lzolx(t);ﬁ (t))prelx(L,E (L))
o * _o* —
+ 0, (£,£7(1)) +g (57(1)) 1t P

and the right hand gide is just Oz(s,x). an fact from 4.80)

& O* *
oz(slx) = .‘S,X f (“2" elx(tlg (t))ngpﬁlx(t’ E;O ££))

(4.9%)

gk

*
v olx(t'go(t))'g(goit)))dt.

Therefore, eg - 62 as 6 - 0 wuniformly on any compact

set. Q.E.D.

We can continue the procedure and finally we have

Theorem 4.1. The expansions of (1.11), (1.12) are valid for any k

to 2 and hold uniformly on any compact set.

o*

(o2]

*
Corollary 4.1, Y6 (s,x) =Y

6k =1 ' k R e
=ttt = 5= N T(s)B'(s) {8,) (s,x) + O(6") where k < 2. ol

(s0x) = 20 et (s) (0 L(sux) !

o
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Proof. Use (2.2) and Theorem 4.1. Q.E.D.

Now we consider goodness of Yo*(s,x) in perturhed problem.
By Corollary 4.1 we kndw Yo* gives approxinately the optimal
control policy in the perturbed problem for small §. It is
also plausible that YO* should give approximately the optimun
in the perturbed problem. The above lemnas and their method of

proof put this rough statement on a quantitative basis. Let

¢6(s,x)_= Js(s,x; Yo*).

In particulaf, ¢°(s,x) = ¢ (s,x). For ¢ > 0, ¢6(s,x) - ¢6(s,x)

o* : j :
represents how much Y fails to be optimal in the perturbed

8 -

problem. It is known that ¢ g 55 and zatisfies the linear

parabolic equation

‘ A ¥ i
+ x'Mz 4+ YO NY® = 0 (4.10)

?ith initial data ¢6(T,x) = 0. Let us write
0 = 9% 4 5y, + 6%, + ole?). (4.11)

By the same procedure as before, we have for k = 1,2

b T = ER{oo® (X o) %) -‘O’Yo* 0 )o*g = 0 (4.12)
k’s 2 Ax! xx Xp/x"* Xp-1'x"9 = sk

~

§ =2
—¢°), By é (¢5—¢°—6xl).

where X ™ ¢°. Let xi = 6-1(4'6
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1]
Hence for k ='1,2 ; 3
i
8 Oy ooy 30k Pt : :
(Xp)g *+ 5 tr(oo (il + ()t t el a0= 0.
: Then
3 Xp = 8y
. T ]
3 X, = E 0, (t,£°(t)) -g (£°(t))at '
b 1 2 Belf T ¢ <ty E
= s ]
k|
‘:; By the same pProcedure, we can prove xi FiXq xg > X, as ;%
| uniformly on any compact set. Py comparing with Lemma 4.6, we
>;? find that
| ?*(sx) - 6% (s,%)
: (4.12)
| : ‘
i 55 3o Lo Ao o . v 19 Al g e F
| = alsd Es,x J olx(t,r, (L)')prpl;_:(k.,\, (L) ydt + ofls")
| |

5 ro* > . v - -
Formula (4.13) shows that Y gives within orces the saquare of

the intensity of perturbation 6§ of the optimun.

Example. Let £6 be the solution of the scalar 1to aguation

P o s
af” = (=86(§7)° 4+ u(t))dt 4+ odaw

with gé(x) = . The control set is R. The critericn of

perfommance is
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{
3 1
& 2 lprss §2 2
3 J(s,x; u) Ls,x j (& + u’)dt.
| s ;_
:’} By [FR1l, Section 6.5], we have f
3 "
E 1
:;5 0% (s,x) = K(s)x2 + q(s) i
3 |
t ! where K(s) = tanh(T-s) and q(s) = ozln cosh(T-s). By |
F | Theorem 4.1
, T |
B ( .04 1
| 0, (s,x) = =2 J kieVE, €% (uyae
. 5,5
s
= e < v4 L B c \-2 o
2(8) (s)x” + 8,(s)x” + By(s)) a
where i

‘ 1
| By(s) = = (1 = —- _
L 3 cosh (T=-s)

)
‘;’ . 602

5 (tanh(T-s)(coshd(T-s) - 1)
4cosh” (T-s)

™
N
-
<
N
I

do g LR gl
g Sin 4(T-s) 4 —-2-—)

: By(5) = 60 (tanh?(1-5) (cosh? (1-5) - 1)
. | - tanh(r-s) (5 sin (2-s) - 59
+ & (1-cosh? (1-s) + ——— e (cosh® (1-5)-1)) .
. . 2 cosh” (1=-8)
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3
2
|
3
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Then

¢6(S:X) = ¢O(S,X) + dol(s,x) + o(4)

¥ (5,30 = Y% (s,x) + 6048, ()%% + 26, (s)3) + o(6).

5. Acknowledgment. The author would like to thank W.H. Fleming

for his guidance and encouragement throughout the course of this

study.




T T R R e ARG RN R 7 (AT Ay e,

[B1]

[F1]

(F2]

(F3]

[FR1]

[Frl]

(K1]

[K2]

[Kol]

33

REFERENCES

J.M. Bismut, "Theorie Probabilistic du Controle des
difusions", Memoirs American Math. Society, 1975.

W.H. Fleming, "Stochastic control for small noise
intensities". SIAM J. Control, 9(1971), pp. 483-517.

W.H. Fleming, "Duality and a priori estimates in Markovian
optimization problems", J. Math. Anal. Appl., 16(1966)
PP. 254-279; Erratum, Ibid, 19(1966), p. 204.

W.H. Fleming, "Stochastically perturbed dynamic system",
Rocky Mountain Math. J., 1974.

W.H. Fleming and R. Rishel, Deterministic and Stochastic
Optimal Control, Springer-Verlag, 1975.

A. Friedman, Partial Differential Equations of Parabolic
Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

H.J. Kushner, Stochastic Stability and Control, Academic
Press, 1967.

H.J. Kushner, "Stability and existence of diffusions with
discontinuous or rapidly growing drift terms", J. of Diff.
Egns., Vol. 11, No. 1, January, 1972.

V.B. Kolmanovskii, "Optimal control of certain quasilinear
stochastic systems", P.M.M., Vol. 39, No. 4, 1975,
pp. 724-727.

-




ACCOMPANYING STATEMENT

i
.
H
i
§
H

PERTURBED STOCHASTIC LINEAR REGULATOR PROBLEMS

by

Chun-~-Ping Tsai

The theory of optimal feedback control of Markov diffusion
processes has been well developed. However, it is a difficult
matter to calculate optimal feedback controls, except for the
linear regulator problem and some other special cases.

In this paper a nonlinear perturbation of the stochastic
linear regulator is considered. An algorithm is given for
computing approximately the optimal feedback control, if the non-
linearity appearing in the nonlinear stochastic differential
equations governing the system is a polynomial in the state
; variables. Under appropriate assumptions on the nonlinearity, the
| method is justified in a mathematically rigorous way. The

quantities which need to be computed to find the optimum approximateiy

P can be expressed in terms of higher order moments ‘of a known

gaussian process, namely the state process ifor the optimum linear

regulator.
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